Length and Energy of Quadratic Bézier Curves and Applications

نویسندگان

  • Young Joon Ahn
  • Christoph Hoffmann
  • Paul Rosen
چکیده

This paper derives expressions for the arc length and the bending energy of quadratic Bézier curves. The formulae are in terms of the control point coordinates. For fixed start and end points of the Bézier curve, the locus of the middle control point is analyzed for curves of fixed arc length or bending energy. In the case of arc length this locus is convex. For bending energy it is not. Given a line or a circle and fixed end points, the locus of the middle control point is determined for those curves that are tangent to the given line or circle. For line tangency, this locus is a parallel line. In the case of the circle, the locus can be classified into one of six major types. In some of these cases, the locus contains circular arcs. These results are then used to implement fast algorithms that construct quadratic Bézier curves tangent to a given line or circle, with given end points, that minimize bending energy or arc length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ARC-LENGTH ESTIMATIONS FOR QUADRATIC RATIONAL Bézier CURVES COINCIDING WITH ARC-LENGTH OF SPECIAL SHAPES

In this paper, we present arc-length estimations for quadratic rational Bézier curves using the length of polygon and distance between both end points. Our arc-length estimations coincide with the arc-length of the quadratic rational Bézier curve exactly when the weight w is 0, 1 and∞. We show that for all w > 0 our estimations are strictly increasing with respect to w. Moreover, we find the pa...

متن کامل

Constructing G quadratic Bézier curves with arbitrary endpoint tangent vectors

Quadratic Bézier curves are important geometric entities in many applications. However, it was often ignored by the literature the fact that a single segment of a quadratic Bézier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this paper is to provide a solution to this problem, i.e., constructing G quadratic Bézier curves satisfying given endpoint (positions and ...

متن کامل

J. KSIAM Vol.15, No.2, 123–135, 2011 ARC-LENGTH ESTIMATIONS FOR QUADRATIC RATIONAL Bézier CURVES COINCIDING WITH ARC-LENGTH OF SPECIAL SHAPES

In this paper, we present arc-length estimations for quadratic rational Bézier curves using the length of polygon and distance between both end points. Our arc-length estimations coincide with the arc-length of the quadratic rational Bézier curve exactly when the weight w is 0, 1 and∞. We show that for all w > 0 our estimations are strictly increasing with respect to w. Moreover, we find the pa...

متن کامل

Degree Reduction of Disk Rational Bézier Curves Using Multi-objective Optimization Techniques

In this paper, we start by introducing a novel disk rational Bézier based on parallel projection, whose properties are also discussed. Then applying weighted least squares, multiobjective optimization techniques and constrained quadratic programming, we achieve multi-degree reduction of this kind of disk rational Bézier curve. The paper also gives error estimation and shows some numerical examp...

متن کامل

Geometric constraints on quadratic Bézier curves using minimal length and energy

This paper derives expressions for the arc length and the bending energy of quadratic Bézier curves. The formulae are in terms of the control point coordinates. For fixed start and end points of the Bézier curve, the locus of the middle control point is analyzed for curves of fixed arc length or bending energy. In the case of arc length this locus is convex. For bending energy it is not. Given ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011